
Python programming Handout

Handout: Python cheat sheets

Introduction
This is a reference for the Python elements covered in this unit. The sheets include short
explanations, brief notes, syntax, and selected examples.

The content has been grouped into categories:

● Lists

● List methods

● List functions

● List operators

● Strings

● String functions

● String operators

● Iterating over sequences

There is also additional information that is not covered in the unit but may be useful in
solving relevant problems. It is signposted with the Explorer icon:

Create a list

Syntax [comma-separated list of items]

Examples summer = ["June", "July", "August"] Lists are usually assigned when they
are created (so they can be referred
to and modified later on).

numbers = [] A list can be empty.

data = [8, True, "Hello", 3.14] Lists can feature items of different
data types.

Access individual list items

Syntax list[index]

The items in a list can be accessed through an index, i.e. their
current position in the list, with numbering starting at zero.

Examples month = summer[0] Retrieve the value of the first item
(zero-based index 0) in a list.

data[1] = False Assign a new value to the second
item (zero-based index 1) in a list.

previous = planets[position-1]
sum = numbers[i] + numbers[i+1]

The index can be the value of an
expression.

Lists

Lists are a type of data structure that involve
individual items organised in a sequence.

Lists are dynamic data structures: items can
be modified, added, or removed during
program execution.

List slices

Syntax list[start index:end index:step]

A slice of a list is a new list that includes list items from a start
index up to (but not including) an end index. Specifying a step
skips over items.

Examples summer = months[5:8] The new list is a slice containing items
6 to 8.

head = data[:100] You can omit the start index (start
from the first item) and the end index
(stop at the last item).

skipped = values[::2] Skip every other item.

Add or remove items

Syntax list.append(item)

Add an item to the end of the list.

Example numbers.append(42)

Syntax list.insert(index,item)

Insert an item at a given (zero-based) index.

Example cities.insert(2, "Oslo") Insert a new item at the third position
(zero-based index 2) in the list.

Syntax list.pop(index)

Remove the item at the given (zero-based) index in the list,
and return it. If no index is specified, remove and return the
last item in the list.

Examples tasks.pop()

last = values.pop() The value removed from the list and
returned by pop can be assigned to a
variable.

queue.pop(0) Remove the first item (zero-based
index 0) from the list.

Syntax list.remove(item)

Remove the first item from the list with a particular value.
Raises a ValueError if there is no such item.

Example countries.remove("Japan")

List methods

You can think of list methods as special
functions that are applied to lists. To call a list
method, you need to use dot notation (as
shown in the examples that follow).

List methods

Find and count items

Syntax list.index(item)

Search for the first occurrence of an item in the list and return
its (zero-based) index. Raises a ValueError if there is no
such item.

Example pos = planets.index("Mars")

Syntax list.count(item)

Return the number of times an item appears in the list.

Example nb_the = words.count("the")

Other list operations

Syntax list.reverse()

Reverse the items of the list.

Example values.reverse()

Syntax list.sort()

Sort the items in the list in ascending order.

Examples names.sort() The items can be strings (and sorting
arranges them in alphabetical order).

numbers.sort(reverse=True) Use the reverse=True argument to
sort in descending order.

You can think of list methods as special
functions that are applied to lists. To call a list
method, you need to use dot notation (as
shown in the examples that follow).

List functions

Some functions can accept lists as arguments,
process them, and return a result.

Length of a list: the len function

Syntax len(list)

Return the length (number of items) of a list.

Example len(planets)

List membership: the in operator

Syntax item in list

Check if the list contains items with a specific value.
This expression evaluates to True or False.

Examples "Pluto" in planets
answer in ["yes", "no"]
name in guests

not "London" in destinations
"London" not in destinations

There are two ways to check if a list
does not contain a specific value.

List operators
List operators allow you to form expressions
that involve lists and can be evaluated.

Other functions

Syntax sum(list)
min(list)
max(list)

Return the sum of the list elements, the lowest and greatest
values in the list, respectively.

Adding lists together

Syntax list + list

This expression evaluates to a new list that comprises the two
lists, joined together in sequence.

Examples numbers = [4, 9, 3] + [6, 3, 2]
pupils = year7 + year8 + year9

Create a string

Syntax "character sequence"

Examples month = "August" Strings can be assigned to variables
when they are created (so they can
be referred to later on).

empty = "" A string can be empty.

Access individual string characters

Syntax string[index]

String character can be accessed through an index, i.e. their
current position in the string, with numbering starting at zero.

Examples letter = month[0] Retrieve the first character (zero-
based index 0) in a string.

character = password[position-1] The index can be the value of an
expression.

language[1] = "A" An individual character in a string
cannot be assigned a new value.

Strings

Strings are a type of data structure where
individual characters are organised in a
sequence.

Strings cannot be modified during program
execution.

String slices

Syntax list[start index:end index:step]

A slice of a string is a new string that includes the characters
from a start index up to (but not including) an end index.
Specifying a step skips over items.

Examples substring = word[5:8] The new list is a slice containing items
6 to 8.

prefix = word[:3] You can omit the start index (start
from the first character) and the end
index (stop at the last character).

skipped = name[::2] Skip every other item.

String functions

Some functions can accept strings as
arguments, process them, and return a result.

Length of a string: the len function

Syntax len(list)

Return the length (number of characters) of a string.

Example len(password)

String membership: the in operator

Syntax substring in string

Check if a string is contained within a larger string.
This expression evaluates to True or False.

Examples "sub" in word
letter in "aeiou"
word in text

String operators
String operators allow you to form
expressions that involve strings and can be
evaluated.

Adding strings together

Syntax string + string

This expression evaluates to a new string that comprises the
two strings joined together in sequence.

Examples greeting = "Hello " + name + "!"
fullname = firstname + lastname

Split and join
It is often convenient to split a string into a list,
or join the items of a list into a string.

Syntax string.split(separator)
separator.join(list)

Examples names = line.split(", ")

"".join(letters)

Iterating over sequences

The for-loop is a special type of control
structure that can be used to iterate over the
elements of a sequence.

Iterating over list items

Syntax for item in list:
block of statements

Execute the block of statements for every item in the list.

Example for name in guests:
print(name)

Syntax for element in sequence:
block of statements

For every element in the sequence, execute the block of
statements.

Iterating over string characters

Syntax for character in string:
block of statements

Execute the block of statements for every character in the
string.

Example for character in password:
print(character)

Using while instead of for

You can follow this pattern to use while to achieve a similar
effect as when using for:

Pattern index = 0
while index < len(sequence):

element = sequence[index]
block of statements
index = index + 1

Iterate over all indices, retrieve the
corresponding element in the
sequence, and execute the block of
statements.

